

• Answer all the following questions

Significant equations sheet is attached.

Question (1) (12 Marks)

Choose the correct answer:

- 1- Which of the h-parameters corresponds to βr_e in a common-emitter configuration?
 - a. h_{re} b. h_{fb} c. h_{fe} d. h_{ie}
- 2- The loaded voltage gain of an amplifier is always less than the no-load level.
 - a. True b. False
- 3- A change in frequency by a factor of _____ is equivalent to 1 decade.
 - a. 2 b. 10 c. 5 d. 20
- 4- By how much does the output signal vary for a class B power amplifier?
 - a. 360° b. 180° c. between 180° and 360° d. Less than 180°
- 5- An oscillator differs from an amplifier because the oscillator
- a. has more gain b. requires no input signal c. requires no dc supply 6- A phase-shift oscillator has
 - a. three RC circuits b. three LC circuits c. lead-lag circuit

Question (2) (20 Marks)

- 1- Differentiate between the audio, tuned and power amplifiers.
- 2- Sketch the approximate hybrid, hybrid π and r_e models for a common-emitter *pnp* transistor. Given $r_b = 3\Omega$, $r_{\pi} = 1.6k\Omega$, $r_u = 20M\Omega$, $C_u = 1pF$, $C_{\pi} = 5pF$, $\beta = 100$, $h_{oe} = 18 \ \mu$ S.
- 3- The feedback capacitance of an inverting amplifier is 10 pF. What is the Miller capacitance at the input and the output if the gain of the amplifier is 40dB?
- 4- Draw two different circuits for phase splitting to be used in class B power amplifier.

Question (3) (25 Marks)

- 1- For the small-signal amplifier circuit of Fig. 1,
 - a. Determine r_e , Z_i .
 - b. Derive an equation for A_v and calculate its value.
 - c. Determine the lower and higher cut-off frequencies.
 - d. Sketch the low-frequency and the high-frequency responses.
 - e. Sketch the phase response.
- 2- For the power amplifier circuit of Fig. 2 and for an input of 10 V rms, calculate
 - a. The input power
 - b. The output power
 - c. The power handled by each output transistor
 - d. The circuit efficiency

Question (4) (13 Marks)

- 1- For the voltage-divider biasing circuit, discuss the condition required to perform the approximate analysis.
- 2- Derive an equation for the Wien-bridge oscillation frequency and show how you can control its gain automatically.
- 3- Calculate the resonance frequency of a Hartley oscillator with the elements of the tank circuit as L_1 = 1.5 mH, L_2 =10 mH and C=470pF.
- 4- Draw the clamper bias circuit used in tuned amplifier and mention the purpose of its usage.

Question (5) (20 Marks)

- 1- Design a BJT Audio Amplifier with following specifications:
 - The amplifier consists of two direct coupled stages with total gain of 57 dB.
 - $\circ~$ It uses a capacitor to couple a microphone signal with internal resistance of 1k Ω and frequency band between 400 Hz and 3.4 KHz.
 - $\circ~$ It drives an 8 Ω speaker through a coupling transformer of 1:3 turns ratio.
 - The speaker signal should be in-phase with the microphone one.
- 2- Design the following system:

Good Luck, Dr. Ahmad El-Banna