- Significant equations sheet is attached.
- Answer all the following questions
- No. of questions : 5
- Total Mark: 90 Marks

Question (1) (12 Marks)

Choose the correct answer:
1- Which of the h -parameters corresponds to $\beta \mathrm{r}_{\mathrm{e}}$ in a common-emitter configuration?
a. h_{re}
b. h_{fb}
c. h_{fe}
d. h_{ie}

2- The loaded voltage gain of an amplifier is always less than the no-load level.
a. True
b. False

3- A change in frequency by a factor of \qquad is equivalent to 1 decade.
a. 2
b. 10
c. 5
d. 20

4- By how much does the output signal vary for a class B power amplifier?
a. 360°
b. 180°
c. between 180° and 360°
d. Less than 180°

5- An oscillator differs from an amplifier because the oscillator
a. has more gain
b. requires no input signal
c. requires no dc supply

6- A phase-shift oscillator has
a. three RC circuits
b. three LC circuits
c. lead-lag circuit

Question (2) (20 Marks)

1- Differentiate between the audio, tuned and power amplifiers.
2- Sketch the approximate hybrid, hybrid π and r_{e} models for a common-emitter pnp transistor. Given $r_{b}=3 \Omega, r_{\pi}=$ $1.6 \mathrm{k} \Omega, \mathrm{r}_{\mathrm{u}}=20 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{u}}=1 \mathrm{pF}, \mathrm{C}_{\pi}=5 \mathrm{pF}, \beta=100, \mathrm{~h}_{\mathrm{oc}}=18 \mu \mathrm{~S}$.
3- The feedback capacitance of an inverting amplifier is 10 pF . What is the Miller capacitance at the input and the output if the gain of the amplifier is 40 dB ?
4- Draw two different circuits for phase splitting to be used in class B power amplifier.

Question (3) (25 Marks)

1- For the small-signal amplifier circuit of Fig. 1,
a. Determine $\mathrm{r}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{i}}$.
b. Derive an equation for A_{v} and calculate its value.
c. Determine the lower and higher cut-off frequencies.
d. Sketch the low-frequency and the high-frequency responses.
e. Sketch the phase response.

2- For the power amplifier circuit of Fig. 2 and for an input of 10 V rms , calculate
a. The input power
b. The output power
c. The power handled by each output transistor
d. The circuit efficiency

Fig. 1

Fig. 2

Question (4) (13 Marks)

1- For the voltage-divider biasing circuit, discuss the condition required to perform the approximate analysis.
2- Derive an equation for the Wien-bridge oscillation frequency and show how you can control its gain automatically.
3- Calculate the resonance frequency of a Hartley oscillator with the elements of the tank circuit as $\mathrm{L}_{1}=1.5 \mathrm{mH}$, $\mathrm{L}_{2}=10 \mathrm{mH}$ and $\mathrm{C}=470 \mathrm{pF}$.
4- Draw the clamper bias circuit used in tuned amplifier and mention the purpose of its usage.

Question (5) (20 Marks)

1- Design a BJT Audio Amplifier with following specifications:

- The amplifier consists of two direct coupled stages with total gain of 57 dB .
- It uses a capacitor to couple a microphone signal with internal resistance of $1 \mathrm{k} \Omega$ and frequency band between 400 Hz and 3.4 KHz .
- It drives an 8Ω speaker through a coupling transformer of 1:3 turns ratio.
- The speaker signal should be in-phase with the microphone one.

2- Design the following system:

Good Luck, Dr. Ahmad El-Banna

